Syllabus

Module title:	Biochemistry (2)	ECTS	$\mathbf{6}$
Polish translation:	Biochemia (2)	Veterinary Medicine	
Course:			

Module language: English			Stage: JM-FVM		
Form of \square intramural studies: \square extramural	Type of \square basic module: \square directional	mandatory elective	Semester: 3		\square winter semester \square summer semester
		Academic year:	2023/2024	Catalogue number:	$\begin{gathered} \text { FVM-V-JMSS-03W- } \\ \text { B09_23 } \end{gathered}$

Module coordinator:		dr hab. Małgorzata Gajewska, prof. SGGW		
Teachers responsible for the module:		Academic teachers of the Institute of Veterinary Medicine; Department of Physiological Sciences/Division of Biochemistry and Dietetics; PhD students in accordance to the internal legal acts; visiting professors; other specialists in the field of study		
Objectives of the module:		The aim of the second semester of Biochemistry course is to teach students about the most important biochemical processes necessary for proper functioning of animal organisms. Students are taught about the metabolic pathways of the main groups of biochemical compounds (carbohydrates, lipids, proteins, nucleic acids, porphyrins), about pathologies connected with the disorders concerning these metabolic pathways, as well as biochemical aspects of cellular signalling. The metabolic pathways are also presented in the aspect of proper functioning of specific organs and tissues. During the practical part of the course students are performing qualitative and quantitative analyses, that are used in biochemical diagnostics, and are important for veterinary medicine. Biochemistry course (2) prepares students for other future courses e.g.: pharmacology, toxicology, animal physiology as well as veterinary diagnostics.		
Teaching forms, number of hours:		a) Lectures; hours $\mathbf{3 0}$; b) Laboratory classes; hours 45;		
Teaching methods:		Lectures: multimedia presentations prepared by lecturers of IVM who are responsible for the theoretical part of the course; the lectures present topics of basic metabolism of biochemical compounds as well as practical and clinical aspects of biochemistry. Laboratory classes: theoretical introduction to each class is made by teachers supervising the practical part of the Biochemistry course using multimedia presentations; practical experiments are performed by students working in teams (23 students). Students learn to do qualitative as well as quantitative analyses. By the end of each class results and conclusions for each of the performed experiments are presented and discussed with teachers. Consultations for students $-1 \mathrm{~h} /$ week. Detailed organization of consultations will be defined by the coordinator of the course at the beginning of semester.		
Formal prerequisites and initial requirements:		Students should finish Chemistry course and Biochemistry (1) course with a positive grade to enter the Biochemistry (2) course.		
Learning effects		Course outcomes:	Learning outcomes relative to the course outcomes	Impact on the course outcomes*
Knowledge:	1	Student knows and understands the main metabolic pathways of the most important biochemical compounds: carbohydrates, amino acids, proteins, lipids, porphyrins, nucleic acids	A.W. 4 A.W. 10	2
	2	Student knows and understands connection between improper functioning of metabolic pathways and metabolic diseases (e.g. ketosis, diabetes, phenylketonuria, gout, etc.)	A.W. 4 A.W.10, A.W. 11 B.W. 1	3
	3	Student knows and understands specificity of metabolic pathways in distinct organs and tissues in relation to synthesis/catabolism of specific biochemical compounds	A.W. 4 A.W.10, A.W.11, A.W. 12 B.W.1, B.W. 2	1 2 2 1
	4	Student knows and understands signal transduction pathways induced by different compounds belonging to hormones or growth factors	A.W. 4 A.W.9, B.W. 1	3
	5	Student knows and understands biochemical composition and characteristics of semen, milk and urine	A.W. 4 A.W. 2 B.W. 4	1 2 1
Skills:	1	Student is able to identify specific metabolites of biochemical compounds and determine their properties based on characteristic reactions	$\begin{aligned} & \hline \text { A.U. } 2 \\ & \text { A.U. } 4 \\ & \text { B.U. } 6 \end{aligned}$	3 2 1
	2	Student is able to use the main laboratory techniques, such as: qualitative analyses, titration, colorimetric measurements, diagnostic tests	$\begin{aligned} & \text { A.U. } 2 \\ & \text { B.U.6; B.U. } 7 \end{aligned}$	3 1
	3	Student is able to predict direction of metabolic processes depending on the energetic status of the organism (availability of proteins, lipids, carbohydrates in diet)	$\begin{aligned} & \text { A.U. } 5 \\ & \text { A.U. } 4 \end{aligned}$	$\begin{aligned} & 3 \\ & 2 \end{aligned}$
	4	Student is able to point differences among species in regard to metabolic changes in animal organisms	$\begin{aligned} & \text { A.U. } 5 \\ & \text { A.U. } 2, \text { A.U. } 7 \end{aligned}$	$\begin{aligned} & 3 \\ & 2 \end{aligned}$

Formal documentation of learning outcome:	eHMS entry. Records collected in the course portfolio i.e. individual records of student results, presence lists, database of oral and written questions, written assessments of the students.
Elements impelling final grade:	Student obtains one grade finishing the Biochemistry (2)course. The final grade for Biochemistry course (2) is based on the average of two grades: $-\quad$ for the semester (sum of points from main verification tests, entry tests and practical experiments) - 50\% of weight
fear the FINAL EXAM - 50\% of weight	

* 3 - complete and detailed, 2 - moderate, 1 - basic.

Quantitative summary of the module:

Estimated number of work hours per student (contact and self-study) essential to achieve presumed learning outcomes of the module - base for quantifying ECTS:	$\mathbf{1 5 0} \mathbf{h}$
Total ECTS points, accumulated by students during contact learning:	$\mathbf{4}$ ECTS

